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Local velocity measurements performed in a convecting layer of fluid show that the 
velocity field can be described by a dominant fundamental velocity mode mixed with 
an increasing proportion of second and third harmonics as E ,  the reduced distance to the 
convective threshold R,, is increased from 0 to - 10. The spatial and thermal de- 
pendences of the amplitudes of these different modes are reported and compared with 
theoretical predictions. 

1. Introduction 
When a horizontal layer of a pure expansible fluid is subjected to a vertical tempera- 

ture difference AT greater than a critical value AT,, this fluid becomes unstable 
if the lower part of the fluid is warmer than the upper part. That is, we are dealing with 
the so-called Rayleigh-BBnard instability. 

Many investigators have studied the properties of this kind of instability, but unti 
recently only macroscopic measurements have been made (Koschmieder 1973). One 
might mention, for example, the studies of the structure and its evolution with AT by 
visualization of the convective rolls (Chen & Whitehead 1968; Krishnamurti 1968), 
and fine measurements of the variation of the Nusselt number when an increased 
gradient is applied to the fluid layer. But all these measurements, accurate as they are, 
give only a global view of the behaviour of the convecting fluid. An example is given 
by the fact that the measured Nusselt number has a transition only at AT, and then 
increases monotonically with AT up to values greater than 200AT, (Koschmieder & 
Pallas 1974) though we know, from other observations, that convecting layers undergo 
several definite transitions: e.g. to three-dimensional motion, to time-dependent 
motion and eventually to turbulence (Bnsse & Whitehead 1971, 1974; Krishnamurti 
1970; Berg6 & Dubois 1974; Gollub et al. 1976; Ahlers 1974). 

In order to find out more details about the convective properties, it  is necessary to 
measure a local variable, such as the velocity or the temperature perturbation. 
Beautiful measurements of the latter (Farhadieh & Tankin 1974) have already been 
made. We report here our measurements of the velocity field and its dependence on the 
supercritical temperature gradient in the domain R, < R < 11R,. Here R is the 
Rayleigh number and Rc its critical value a t  the onset of thermoconvection: 

where a: is the volume expansion coefficient, g is the gravitational acceleration, d is the 
depth of the fluid layer and v and K are respectively the kinematic viscosity and 
thermal diffusivity of the fluid ( K  = h/pC,). We shall see that the velocity field can be 

R = a:gd3AT/VK, (1) 
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FIGURE 1 .  Experimental set-up. L,. L,and M,, are respectively lensesandmirrors; P.M. is the 
photomultiplier. k is the exterior bisector of the two beEtms. 

described by a superposition of different spatial modes whose wavelengths correspond 
to the first few harmonics given by the linear stability analysis and we shall compare 
our results with those obtained from finite amplitude calculations. 

2. The experimental set-up 
The cell 

The fluid is confined in a 10 x 3 cm rectangular Plexiglas frame whose depth is 
d = 1 em. The horizontal boundaries below and above the frame are made of massive, 
1 em thick, copper plates; they are good heat conductors with 

K,, Kfluid (Kcu = 1-12cm2s-1).-f 

Their temperatures are carefully regulated to within lop2 "C by circulating water 
provided by two thermostatic baths. The temperature difference between the two 
plates is measured with an accurately calibrated differential thermocouple. 

Velocity measurements 

The local velocity in the fluid is measured by laser anemometry, the principle of which 
is well known (Wang 1972). A schematic diagram of our experimental set-up is shown 
in figure 1. Two parallel and coherent beams from the same laser (HcNe,  5 mW) inter- 
sect and form interference fringes at  their crossing point P. The fringe spacing is 
given by 

(2) i = h'/2 sin 40, 

t We know from experiments (Berg6 & Dubois 1974) and from calcnlations (Normand 
Pomeau R. V61arde 1077) that the rewilts depend on the ratio Kplalr/Kflnl,,. 
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FIGURE 2. Schematic representation of two-dimcnsional rolls 
corresponding to the velocity field in the h o a r  domain. 

where A' is the wavelength of the light and 6 the angle between the two beams in the 
fluid. We choose 6 N 21 O (in air) so that the two beams, which are in a vertical or in a 
horizontal plane, can enter the cell through the Plexiglas frame. I n  this case i 2: 1.75,um. 
The velocity measurements are made in a rather small volume of 0.45 x 0.45 x 3.5 mm3, 
the beam diameter being reduced by lenses (L, and &in figure 1) .  If particles cross the 
fringes, the scattered light is time modulated at the frequency f = G/i, where V, is the 
projection of the particle velocity on the scattering vector k as shown in figure 1,  

The laser beams are arranged such that k is parallel to  the axis X ' X  (V, measure- 
ments) or the axis 2'2 of the cell (5 measurements); 2'2 is the vertical axis and X ' X  
the horizontal axis parallel to the long side of the frame (see figure 2). 

Part  of the light scattered a t  the point P i s  focused on a pin-hole in front of a photo- 
multiplier and a real-time Fourier analyser gives directly the frequency f corresponding 
to  the modulation of the photocurrent, from which we deduce V,. 

Physical properties of the JEuid 

I n  the experiments reported here, we used silicone oil, the physical properties of which 
are given in table 1. The Prandtl number cr = v/Kis about 930 a t  25 "C. The viscosity v 
and the refractive index n have been measured in our laboratory. The ot.her parameters 
are taken from a table provided by the oil's manufacturer. 

The $ow pattern 
It is well known (Schliiter, Lortz & Busse 1965; Davis 1968; Stork & Muller 1972) that 
in a rectangular box the convective structure just above onset consists of straight rolls 
parallel to  the shorter side of the rectangular frame. I n  our geometry, whose aspect 
ratio is i\ along X ' X  and Q along Y ' Y ,  we clearly observed this feature (Berg6 1975). 
For low supercritical Rayleigh numbers the rolls were set up preferentially with a 
wavelength A = A, N 2d. A remains constant in our cell up to E 2: 10 [e = ( R  - Rc)/R,]. 
The experimental value of R, determined from our velocity measurements is 1600 100; 
the error is mainly due to the uncertainty in the physical constants of the oil. 

Note, however, that  structures with A + A, can be obtained and maintained in the 
same temperature range but that  all the results reported here refer to structures with 
wavelength A E A,. Another important point is the fact that the structure is essentially 
t,wo-dimensional : 

2 2 - 2  
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T P Y 01 A QP K 
("C) (g cm-3) (cmzs-1) ("(3-1) (cal cm-l ' C - ~ S - ~ )  (cal g-l)  (cmz 8-1) n 

(1.14 k 0.02) x 1.402 
(1.15k0.02) x 1.398 

1'056) 0.96 x (3.7 f 0.1) x lo-* 0.337 f 0.002 25 0.960 
35 0.952 0.875 

TABLE 1 

( a )  V, and V,  (the horizontal velocity component parallel to the long side of the 
frame and the vertical component) are independent of Y ;  

( b )  V, = 0 (V, is the horizontal velocity component parallel to the short side of the 
frame). 

We accurately checked point (a) for values of E lower than 5. For E > 5, V, is slightly 
dependent on Y ,  this 'modulation' reaching 7 yo at E - 9.5. We performed all our 
measurements at Y = & I ,  i.e. at the middle of the horizontal cell width. The main 
problem of the three-dimensionality (V, + 0 )  will be discussed in a separate paper but 
we can mention here that in the same geometry a well-defined threshold exists for V, 
but is above the studied range of E .  

3. Experimental results 
Our aim is to study the velocity field in the layer from measurements of the two 

velocity components YY and V,. But the spatial arrangement of the two laser beams 
with respect to the cell allows us to measure the whole field only for the YY component, 
since V,  can be measured only in the vicinity of the midheight of the fluid layer 
(2 - 0-5d).  As we have reported earlier (Dubois 1976), the velocity field is perfectly 
reproducible from one roll to another (if we neglect those near the boundaries). Thus 
measurement of the velocity field along only one wavelength suffices to establish 
reliable data on the flow field. 

The X dependence : Fourier analysis 

Most of our measurements give the dependences Yy = f ( X )  and V,  = f ( X )  a t  fixed 
values of 2, Y and E ,  typical examples of which are shown in figures 3(a )  and ( b ) .  
A Fourier analysis is then performed on the experimental spatial dependences. We 
decompose the data into a sum of different spatial modes including the fundamental 
(here A = A,) and its first few harmonics (QA,, QA,, ...). 

In the domain 0 < E < 10, the three first spatial modes A,, +A, and +A, are needed 
to fit the experimental points. We have, however, searched for the fourth and fifth 
harmonics, but could not establish their presence. Typical examples of our results 
are shown in figures 3(a )  and ( b ) .  The quality of the fit between experimental data 
and the results of the Fourier analysis can be seen on these figures, where the solid 
line represents our calculated profile obtained from the relation 

in which the origin of the X axis is taken at  one of the lateral boundaries of the fluid. 
The experimental data give P3 = 0 and P2 = k n. 
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FIGURE 3. ( a )  Dependence of the horizontal component V, of the velocity on ,X measured at 
2 = Z* = 0.22d; E = 5.76. 0 ,  experimental measurements; -, computer best fit, with the 
following values: V k  = 337 f 10pm 8-1, 7’2, = 13.7 1 ,urn s-l, V; = 19 k 1 ,urns-’. ( b )  Dependence 
of the 77Zcomponent on X compared with the ron ip te r  best fit, which gives J7i = 340 f 10,um s-l, 
1’; = 1.7 f 2pm s-l and J7i = 5 8 k  5,um s-* (2 = $d, E = 5.67).  

V $ ( Z ) ,  V % ( Z )  and V$(Z)  are the Fourier amplitudes of the different modes a t  the 
level Z. I n  the case of the curve shown on figure 3(a ) ,  measured a t  Z = Z* = O-ZZd 
(where V l ,  is a maximum with respect to  Z), Y = +l and 8 = 5.76, we obtained 

Vk(Z*) = 3 3 7 5  lOpms-l, V$(Z*)  = 1 3 - 7 2  fpms-*, V$(Z*) = 195 lpms-I. 

I n  the same way Fourier analysis of the curve shown on figure 3 ( b )  (2 = Z** = 0*5d, 
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FIGURE 4. Dependence of the horizontal component V' = V i  on 2 

measured at E = 0.69. X = 4(2k+ 1)  A (k is an integer). 

FIGURE 5 .  Measured amplitude of V; component plotted against 2 at E = 5.75. 
The clashed line represents the theoretical profile. 

Y = $1, B = 5-67) gives 

V&(Z**) = 340 & lOpms-1, V%(Z**) = 1.7 & 2prns-l, V%(Z**) = 58 & 4pms-l, 

where V,  obeys the general relation 

(4) 
2nX 4nX 6nX 

V,(Z) = Vl,(Z) cos- + VZ,(Z) cos- + V3,(2) cos--. 4 A,. A, 



Velocity jield in Raleigh-Be‘nard convection 

I ,  

647 

, 

7 

FIQURE 6. Schematic representation of the behaviour of the V z  mode 
in comparison with the fundamental. 
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FIQURE 7. Schematic representation of t)he V* mode. 

LLL 

77 



648 M .  Dubois and P .  Bergk 

400 

200 

- - 
I YI 

E 

E' 
-3, 100 

2 
- 

50 

20 

in I 1 I I I I I I I  .. 
7 I - 3 4 5  7 10 

E = ( R  - R, ) / R ,  

FIGURE 8. E dependence of the maximum Fourier amplitudes Vim= and V:mx. 

The 2 dependence of the velocity amplitudes 

Fourier analysis of the dependences V' = f ( X )  and V,  = f (X) shows clearly the 
variation of the different harmonic amplitudes with X .  But to find the full spatial 
variation of these amplitudes, it is necessary to examine the dependence of the velocity 
on 2. 

At a given value of E ,  we measured yy =f(X) a t  many different 2 levels. Fourier 
analysis of each of these curves yields the variation Va = f (Z) ,  where V a  is the Fourier 
amplitude of mode a and a = 1 , 2  or 3.  The results are shown in figures 4 and 5.  For the 
first harmonic (figure 4), the dependence V& = f (2) was obtained by direct measure- 
ment of yy at a fixed value of X (X = a(2k  + 1) A,, where V& is a maximum with 
respect to X )  for a low value of E where the contributions of V 2  and V 3  are negligible 
(see below). One can see that V,(Z) = Vk(2) is a maximum at 2 = 0.22d and zero at 

Typical behaviour of V S ( 2 )  is shown in figure 5 ;  it appears that V s  goes through a 
maximum a t  the midheight (2 = 0.5d) and*has two zeros respectively a t  2 = 0.28d 
and 2 = 0.72d. If we disregard the boundary effects (Vy = 0 a t  2 = 0, cl)  the behaviour 

2 = 0-5d. 
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of the second-harmonic component V$ looks very much like that of the first, but 
displaced by one-half of the fluid depth. The dependence of V$ on 2 is quite similar to  
that of V k ,  i.e. it vanishes a t  2 = 0.5d and goes through a maximum a t  2 N 0.2d. 

By taking into account all the results concerning the spatial variation of the velocity, 
we can arrive at a simple description of the convective motion. The behaviour of the 
first harmonic can be accounted for by 'rolls ' inscribed in squares of sided, the vorticity 
of the rolls being opposite in adjacent rolls. The second harmonic can be represented by 
four identical rolls superimposed on a fundamental roll as shown in figure 6, and the 
third harmonic by three rolls elongated along the 2 axis (figure 7). 

Variation of the Va with E 

As explained above, the spatial dependence of the velocity field can be thought of as 
composed of a superposition of harmonic modes of different amplitude. So the charac- 
teristics of the total flow will depend on the relative amplitudes of these harmonic 
components. For a given value of E ,  we know from our spatial analysis the maximum 
amplitude of each component V% and V g  ; let us call this VS,,,, or VL+zrnBx respectively, 
each corresponding to  a specific point in the layer. Let us now see how these maximum 
values depend on E .  

I n  the midplane of the cell, we have 

V: being zero for symmetry reasons and in agreement with our experimental results. 
Thus 

These parameters were measured a t  different values of c; they vary, as shown in 
figure 8, according to the power laws 

V',(Z**) = Vim,,, V",Z**) = V",,,,. ( 6 )  

Vl,,,, = (148 f 5) ~oao*oo2pm s-l, 

V3zrnax = (4 & 0.4) ~ ~ ' ~ ~ * 0 ~ ~ , u m  s-l. 

(7) 

(8) 

Similarly, the Fourier amplitudes Vk,,, and VS,,, (measured a t  Z = 0 . 2 2 4  yield 
the same power laws: 

(8 < 5 ) ,  VXmax 1 = (132 f 4) ~ o ~ ~ * o ~ ~ p r n  s-l 

Vg,,, = (1.5 & 0-3) ~ ~ ~ ~ ~ * 0 ~ ~ p m  s-l. 

Now, if we look at the behaviour of the second-harmonic terms, we remark that, in 
the midheight plane of the fluid layer (Z** = 0*5d), V k  = 0 and V3, = 0 (symmetry 
reasons) and V$ is a maximum (see figure 5). So measurements of F'' at Z** = 0.5d 
give directly V% (checked from periodicity with respect to  X )  and we find, as shown in 
figure 9, that  

V$,,, = (5-3 f 0.5) s-l. (11) 

These results permit some pertinent remarks. 
(a)  I n  a relatively large domain, say 0 < c < 2, the amplitudes of the second- and 

third-harmonic terms are very small compared with that of the fundamental. Thus in 
this domain the fundamental mode alone suffices to account for the convective motion: 
this domain may be called the 'linear domain'. 
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FIGURE 10. E dependence of V,,,,. 

( b )  Coinparison between the amplitudes of the horizontal and vertical components 
of the same harmonic is very instructive, because i t  expresses the conservation of the 
mass flow in a roll: Vk,,, is almost equal to  V',,,, (square rolls, 6X = d, 62 = d )  and 
Vg,,, is about one-third of V",,,, (rectangular rolls, 6X = i d ,  62 = d )  (see figure 7). 

( c )  Vi-,,, does not exactly follow the power law (9) given above. For high values of 
E we have to rewrite (9) as 

wit.h the approximate experimental relation 

(12) 

A V k  N 1.5e1'5pm s-l. (13) 

Vxmax 1 = 132e06+AV~-pms-1 
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The existence of this extra term explains a surprising result: in a large domain of 8, 

VXmax, which contains first- and third-harmonic contributions, varies as (see 
figure lo), a behaviour which is expected for the first-harmonic mode alone. In  fact, 
if we look at the respective phases of the different modes in figures 6 and 7, we can 
deduce that, at X = $ ( 2 k +  1)A and Z = 0.22d, V$ = 0 and 

(14) 3 
&ma, = Vkrnax - J',rnax* 

V$,,, is given by ( 1  2) ; thus we have 

yy max = 1 3 2 ~ " ~  + A Vk - V%max. 

From (1 0 )  and ( 13) we find that 

So V,,,, = 1 3 2 ~ 0 ~  as seen in figure 10. 

illustration of this behaviour : 

A V> - Vg,,, N 0. 

The results obtained from Fourier analysis of figure 3(a)  ( E  = 5.75) give a good 

Vk,,, = 337pms-l, 

from which we deduce A Vk = 17 f 2pm s-l, which is approximately equal to Vgmx 
( = 19 1 pm s-I). Since this extra term AV& is very small it  is very difficult to study its 
variation with Z. Nevertheless, owing to its dependence, we are tempted to relate 
this term to another third-harmonic mode, with period A, along X. 

4. Comparison of our experimental results with finite amplitude calculations 
Busse ( 1  967) was the first to  give the amplitudes of the local variables in a convective 

fluid. Recently, Norman et al. (1977) performed a complete calculation of the ampli- 
tudes and spatial dependences of the velocity field in the Rayleigh-BBnard problem. 
These calculations concern the first three harmonics and are valid for low supercritical 
Rayleigh numbers. They are based on the usual expansion in terms of a small parameter 
d of the form 

where R(') = R ( 3 )  = 0 in the case of two-dimensional rolls. In  the same way, 

R = R, + E"R(') + E"ZR(2) + E33R(3) + . . . , (15) 

v = q+E"2V,+E"3v3+  ..., (16) 

where V is the amplitude of the velocity. These expansions, when restricted to the 
first terms in E" ( <  E d ) ,  are valid only for low values of E", which is then equal to 

(R,/R(2))td [C = (R- Rc)/Bc]. 

Under this condition, the theoretical expression which gives the amplitude of 

K 
d 

V',,,, = 0.96 x 24a2- 8 = 0.96 x 

where a = (27~/A) d is the dimensionless wavenumber. 
If A = A,, we have a = a, = 3.1 17. We remark that, at a fixed value of 6, the velocity 

amplitude is dependent on only the physical parameter K (the thermal diffusivity of 
the convective fluid) and the depth d of the layer. 
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First harmonic Second harnlonic Third harmonic 
7*- -7 7 b - 7  --A- 1 

Virnax  J’gmsx V i m a x  V>rnax v;nl,x v;,ax 

Theory (Normand et d) 135 133 2.9 2.6 2.2 0.77 
- 3.8 - 5 Theory (Busse) 138 133 

Our experiments 1 4 5 + 5  1 3 2 k 4  - 5.3 0.5 4 +_ 0.4 1.5 +_ 0.3 

TABLE 2 

Spatial dependence 

Calculated spatial dependences V& = f(2) and V g  = f(2) are shown in figure 4 (solid 
line) and figure 5 (dashed line) for the case of rigid-rigid boundaries with 

V , = V , = t ? = O  a t  Z = O , d  

(0 is the temperature perturbation). We see that the agreement between the experi- 
mental and calculated dependences is very good; qualitative agreement is also found 
for the third-harmonic term. 

AmpZitudes of each velocity mode 

All the results, experimental and calculated, are summarized in table 2, where values 
for E = 1 are given in ,um s-l, Following a remark of a referee, we include in this table 
the velocity amplitudes calculated from Busse’s (1967) theory. 

We can see that the agreement between the experimental and calculated results is 
very good for the first-harmonic terms. But the amplitudes Vk,, and VkaX found 
experimentally are twice those calculated from perturbation theory (Normand et aZ.), 
while they are in agreement with values deduced from the Galerkin method (Busse).? 
On the other hand, we calculated the maximum amplitude of the fifth harmonic of the 
velocity from Busse’s theory and found that even for B - 10 this amplitude is of the 
same order of magnitude as our experimental accuracy (2 or 3 yo). 

Dependence on e 

If we consider Landau mean-field theory, we expect that the amplitude of the funda- 
mental velocity mode varies as €05 .  It follows that V 2  (given by second-order terms) 
varies as c1 and V3 (given by third-order terms) as These B dependences can also be 
deduced by theoretical calculations from expansions like ( 1  6). If we look a t  the experi- 
mental results, we find it very interesting, but somethat surprising, to see that these 
power laws are followed even far from the threshold of the convective motion. In  the 
entire domain studied V1 remains proportional to eo5, V 2  to el and V3 to ~ ~ 5 .  

It is of interest to compare, at a high value of B (say B = lo), the relative amplitudes 
of the three modes: VL,,, E 460,um s-l, Vg,,, 2: 48,ums-l and VSmax 2: 132,ums-l. 
The contribution of the second harmonic remains comparatively low and, as seen 
above, does not affect the characteristic amplitudes of the velocity components V,,,, 

Note, however, that his values have E dependences somewhat different to that observed and 
consequently the agreement with experimental amplitudes is not so consistent. for higher values 
of c, especially €or the first-harmonic term. 
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and G,,,,. On the other hand, the amplitude of the V 3  mode rapidly becomes im- 
portant compared with that of the fundamental mode, in particular a t  the midheight 
of the fluid layer, where V,,,, = Vkmax+ V”,,,,. In  conclusion, the measurements 
reported here show that knowledge of a Iocal variabie such as the velocity is very 
important for the understanding of the convective properties. Moreover, comparison 
of the experiment,al amplitudes with calculated ones allowed us to perform a good test 
of different theories. 

We thank C. Normand, Y. Pomeau and M. G. Velarde for their theoretical calcula- 
tions, performed in parallel with our experimental work, and for stimulating discus- 
sions. We thank also L. de S&e, who set up a Fourier-analysis computer program. 
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